
AD-819 2" K39SR PROJECT ~MEENT ASSISTRUT VOLUME I1(U) KESTREL V/1
r INST PALO ALTO CR R JUELLIG ET R. JUL 67

WICLRSXFIO CTR-67-70 VOL-1 F3@662-94-C-019 FS52 MmNLSSFEtP hF/0EEEEEI

LmhhE~~h

1112.0 11112.5i
- T 2d 111112.2

U0.~ 1112.0

~~w w *W *Ww W W W w-.

00
RADC-TR-87-78, Vol I (of two)
Final Technical Report

July 1967

KBSA PROJECT MANAGEMENT ASSISTANT

Kestrel Institute

Richard J0illi9, Wolfgang Polak, Peter Ladkin and Li-Mel Gilham

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

DTIC
DEC, 2 (i 987~

ROME AIR DEVELOPMENT CENTER
Air Force Systems Command

Griff iss Air Force Base,, NY 13441-5700

So

This report ha hen r-vt- ewe.d by the \I)C I'll)h1 ic Aff a ir: , fic. (>A) and

is releasable to t he Nt liona I Tec h ni a I I n rmit ion Sc rv ic'e (,NT IS) At NT]I S"
it will be r-leasabt[e to th, general public, inc led ing foreign nat ions.

Although this report rcferences RADC-TR-87-78, \'(1 I I whi(h i; I l rited

distribution, no limited information has bh.en (extr et .!.

P \DC-TR-87-78 , Vo I (w0 tovic) has h e n rev i w'wd and) i :ip Jr v , for

publication.

APPROVED: 'S

DOIJLAS A.

Project Eng inc, er

.i))

APPROVED:

RAYMONI) P. URTZ JR.
Technical Director
Directorate of Command Control

FO- ' \:

If vour address has cliangd or it vmi 1 1 eievd f rol~c the' V 4)
- ~mail ing l ist , or if t he d t 5: s i 111 1 o.sp cd 1)eil 'lye 17 >I' in Z-t isel

*please not ify RmDc (mOEs) Crift fi; A! '4 <4 1-77 Tu. will asis in;i

I

* ma inta in ini'' a (urrent mil ill;' list..

Do not mt-urnm c-p i I I s -n .e i :; c ~
not ices, ol aI ; e it is ;0, !.1 i t ' r, ,I 1 11 i). V '' II 0'

" !
• . .

.4 :'l

- - 1. j "-7. T. O,.n $.A , .f: _ k.. . c ,e .. v _- .

UnCLASSI FI I)
SECUR!TY CL.ASS PCA- ONOF" 7

REPORT DOCUMENTATION PAGE (jV or 0 704 0188

la REPORT SEC ,R,Ty L-AW- LAIO. N a LSR 7MAo'''

UNCLASSI FlED N/A, . d

2a. SECURITY CLASSIFiCAT ON AUTHOR:TY 3 D.STP757ON 'AVA LAB L. OF 5i aQR' ./

N/A tpprovL d for publir release;
2b. DECLASSIFiCAT ON DO)VNC%(RAD Nc, SCoEFDUei

4 PERFORMING ORGANIZAT!ON REPORT NUMBER(S) 5 MONITORING ORGAVZA' ON REPOR7 NIJMBER:S)

N/A 1AC!Rb-')(w,0

6a. NAME OF PERFORM'NG ORGANIZ ATION 5bOFOICE SYMBOL 7a NAME OF MON:'ORING ORGAN.ZA71ON

Kestrel 1nst i L't- E Foi:," Al" e'esa ,t'nter (Cf'!';)

6c. ADDRESS (City, State, and ZIP Code) 7b ADDRESS (City, State and ZIP Code)

1801PageMillFoadCriffiss AFB NY 13441-5700

Sal. NAME OF FUNDING SPONSORING 8 b OlFFCE SYMBOL 9 PnOCLPF MEN' INS *RLM,T V DN lEPCA,' ON NuMIBER

ORGANIZATION (if applicable)

Rome Air Development Cene C'01's F30602-84-C-0lI)9
9c. ADDRESS (City, State. and ZIP Code) 10 SOURCE OF

1
UNDN) NiVEIERS

CrfisABN 34-70PROGRAM i ROIECT ArWORK _,NIT
GrffssAE Y 341570EIEMENT NO NO NO ACCPSS ON NO

.r 270-2r V)8L19 34

11 TITLE (Include Security Class# i'ati)

KBSA PRO.JCT 't\NACI:M:T AsS TCANT

12 PERSONAL AL7

R ichori! cT I Ii ,o Il fgouig 1'olak, Peter Ladkin, LI->'i 1 Im
13a TYPE OF REPORT in 'MVE CO'iERED i4 DAE[Ct REPORT Year Montkt Day) 5' P'ACE CO-,NT

Finl PO Mavy 84 -o Nov 80i]ll 11)8
'6 SUPPL.EME"ARY %01A' 0%.

17 BRC Continue onjF IS erse i reeor' Rnd dentf'ynu by relers nfumber) n dettyb loknmbr

(Zone f L JIR 't'elP n i t iotT Art To i fe i ' [i o] it -,. 'i P' i kn w i n Lt baiso) qy t i t (s)

* ~ ~ ~ ~ ' ti -PAt pr o fi'- fon iehre irtL nt s itan idnty o by :111(1 number)nil l)iI 1 i i1 i)I tI' ~ ip

T I, i r t Al t' rp to i t - ;L 1 w1;'iL n t k ii p, I r j II(. i') e t;IL 5 r L k', I I I r 1 c (i 0 Tnt r, f it h IV

t jit pro i;-;'; f" LL I- h I pie;- ' I i'lOLt it iio 111 0f EIn tIii'k I I,., 1i .1 1 i L iv i t :o (.t T ;l'ppr

tr)'i ;IL11, LIt- j 1, II m.5 nst .i "wi) opr t i wt h crii' I 'Li I L iIwiLiiiI
EtlIL' IL 'iidjL11i 1 ilib 'ofwr'(l ivI ojji I -I)' 1521

'p~)- o ! It r l p "O

I fi l (0(t V0) 0r V d trip

tOror 143 IU 8 ii I" 'i ri (J i r tII, I ,

1, 11 i -., I 11i l. , 111 t -, 1:Il')
r v!*iti11 t1 , 7 I!v Ip 1I

Ov ~ "A -d 11, 1 f d -) t ",(

*UNCLASSIFIFD%

Block 19. Abstract (Cont'd) .

and the designs and programs of software synthesis. Both involve the development of an
executable plan that optimizes certain objective functions within given constraints.
Software programs are plans executed on hardware architectures; plans are programs
executed on organizatitonal architectures. **~

-.. W.
This report discusses the technology uise, the formal isms ond m~odel s developed, and
describes the PMA project model that was const~ructed to (lenontrate the concepts.

A ,

% .

Contents

1 Introducion1

2 Knowledge-Based Programming 3

2.1 Very- High- Level, WNide-Spectrum Languages. 3

2.2 Reuse of Domain Knowledge 5

2.3 Encoding of Domain Knowledge in PMA 6

3 The PMA Model for Project Management 8

3.1 A Formal Model for Software Engineering Environments 10

3.2 The PMA Domain Model 10

4 The PMA Model for Time 14

4.1 Background to the Work on Time. 14

4.2 Reasons for Extending The Model. 16

4.3 The PMA Time Manager 16

4.3.1 A Taxonomy of Relations 16

4.3.2 Interval Time Units. 17

4.3.3 Operators. 18

4.3.4 Implementation 19

4.3.5 Additional Work. 19

5 The PMA Prototype 19

5.1 PMIA Functions 20

5.2 PMA User Interface 22

6 Conclusions 23

References 24

%
5

~IiWWAMWW~tW ~ 1J EW ~Y I~~JV~W V"(I~ W I~1V~W LIJW W"UtVXVyW~~lW\'VVVV7WTRVVM. W' V V No V, WO KI WV '

* 1 Introduction

S Softwvare project management has the responlsibility for planning. controlling and coor-
dinating all the software lifecycle activities. Its. objective is more cost-effective and more
ra)id dvelopment of qulality software. Despite advances in software technology such as the
use of higher level languages and improved mianagement techniques (software engineering).
currently project managers are severely hampered in achieving this objective by the In-

formal and undocumented nature of lifecvele activities and the fragmentary, obsolete, and
inconsistent data available to them. As the demiand for niew soft-ware is increasing faster
than people's ability to develop it [&24,7], we believe that the solution to software project
management problems rests not only in improved management techniques. bult also InI a
comprehensive software environment that capture,, all lifecycle activities and the rationale
behind themi so as to assist all the members of the project team in their resp~ective project
tasks.

This report describes the work at Kestrel Institute under a contract (No. F30602-84 -C-0109)
to Rome Air Development Center on developing a knowledge -baq ed Project Management .-

Assistant (PMIA) that provides for the formalization of. and reasoning about, lifecycle
activities to support software project management.

-A.The Knowledge-Based Software Paradigm. Software development, whether in-the-
* large or iii-the-small, is a knowledge- intensive activity. The conventional informal, person-

based software paradigm leaves much of the extensive knowledge required for development
implicit and thus fails to capture the entire programming process adequately. In order to
solve the problems caused by this approach and many other existing programming method-
ologies and environments, the knowledge-based software paradigm has been proposed [5].
This new paradigm scores hiigh on all the four software productivity improvement strate-
gies (i.e. write lessq code, get the btl fromn people. aivoid rework. dtivclop and u~se integrated

project support environments) suggested by Boehmn [8].

The main differences between the knowledge- based paradigmi and the traditional paradigm
are as follows. In the traditional framework, the emphasis i-. onl the prc-ducts. e.g. software
specifctos prga descriptions, and source code. Only the products are recorded,

archived. analyzed, and possibly reused. Because the degree of formality of the laniguages
used in these product, is weak, it Is, difficult to support t Leir prodhlict ion with atitomrated
tools. Becaulse the transforniat ionl steps are Carried out maiin mllv. inevitalyl errors are
Introduced,. and] additionial pha('>' ID, !ICCCS14try t(d i~co vcr andl rtlfy tjhosc erro)rs. %

Thbe ktlow~ldge-basedl approah. oh1 ~l -'c llt ;indl ;o~tciiipt .i t(Ip hf. kiIlo\-ho\ of

software produictioni. and~ to shijpce ~' CiI lt r t..t ~rv l ehl

Ing prodlucts rather than just thle ,i 1, tw dtr!! . th liii? 1(3pt s sed by " tflwar

designers, an~d the ki le zt of p~roLT;i1 :1, 1 f dc'l..I> ~wur I~ gi1 aii(1111i

pleinentatiol lbecotiilc a procfe ..- tl!:' ! I'>I 02 t'is iI t ail. to r4

ni-reisitg dlegrees. automat ;ilft Fit 1 r I t' :s~ttt lrvtii

step., liv b(en slioxvii to Itt corict. ;il ;!.11 c ' iiC '.t '

%S

- ~q ~rw uw -vr '
"M%'[%"'

guaranteed to be correct. Thus. the effort necessary for validation anl] verification It,

drastically reduced. P.:

Transformational Program Synthesis. Transforiiat ioMI progranm synthesis has beeln

a very active research area for over ten years. Partsch and Steiiibriiggen give a survey of % 1 _%
transformational systems [27]. Goldberg reviews program design and construct ion tech- %.,-

niques that have been or could be formalizedl for use in automated program svntImsm "'

systems [13].

The literature cited strongly indicates that the research focus in the past has 1]eeIm ,.11

providing knowledge-based aids for the design and implement at ion of prograis. Although'.-

many problems remain, the transformational program synthesis technology has matured

to the point of productive use outside the research laboratorv [101.

Knowledge-Based Software Project Management Support. To date, most project ,.

management systems simply automate traditional ways of charting project tasks with

techniques such as CPM and PERT. These systems provide limited assistance in project

monitoring and tracking; they, fall short in intelligent inference capability, extensibiitv.
and adapatability. In contrast, the PMA aims at behaving as an intelligent assistant

that actively supports project managers in planning. controlling and coordinating all th.

software lifecycle activities. The complexity of tis ambitious undertaking calls for a better

modelling of the project management domain and for applying advanced technology in
attacking the problem. ,%.,%.

We have based our PMA effort on applying methods of knowledge-based program syntiesis

to software project management problems. The promise of this approach derives from the
observation that in the course of a software project (including the "nmamntenance" phase

many types of plans, agendas, and procedures are generated. evaluated, and then di,'r,1,., b '."%

or executed. These plans and agendas can be viewed as programs over a suitabl domai,

of primitive operations.

Viewed from this vantage point, the task and concomitant problems of a manager planning

a project and those of a software engineer designing a software sv stem become very similar
in nature. Both tasks essentiall involve the development of an executable plan that -

optimizes certain objective functions within given constraints. Software programs are

plans executed on hardware architectures: plans are prograns executed omi organizatinm]

architectures.

Thus, the approach taken in knowledge-based tro, rain syntliesis shoulh apply: f Cm: lali;'"

pertinent knowledge in suitable formalisims. spI t rt i11(c rfil emett of 1it 6;'1 l];Ill ai l"

report derivations, aid in the selection front ;it, it i 'ye p1ll thas'(d oil the ol flecti\v' fi l.".

tions to be optimized, perforrim automiated syitim,'i. of j)r)gIiIIm, fm r specified '11,,al-. ti ,.

forth. The rationale for and benefits deriving foint tt,- 1. l* 'm m , arc, mntah. ,i ,,-.." "

the same as for software design and inipleientat ti..

?.-.. -.

%" .

.,-'-. ,-," . -"-. ."-" . , ," "-. ."-" . '.. ."-"-, ."," . -"-, ,, ,"-" , ,"-" , -. ;,"-, "." , -",',; ", ,"." . -. . -," " .

Ov'erviewv Of The Report. Inill(- ti,,iainidi of thli report. Section 2 briefly discusses
anld ililltit ats somle of the ('leiIIeilt.s of ki'il d£ ; 1(1 sylies'is t echnology that weI use

ill ttacingsoft ware project mlanagemienlt Suippo rt prob iiills. Sect ion 3 discusses a formial-
isml for des.cribing software neei ii !li(illecr lit- it -olllcl?. i.e. thle formalization of knowledge

ah ,)ut soft ware environmients. and i~t P NIA pioiicct i i~ bu il t oii this formalisni. Sect ion
4 discusses the work onl t inie miodelling ant h linpl .- ut!at in of the PNIA time manager.
Sect ion 5 describes the experimiental PNIA pro! utvc Imbillt to demonstrate the feasibilit v
of ouirl app~roachi. WVe briefly des,-cribe thle fic rt ii, audi cap~alllt ies of a knowledge- based
poject niatiageinent assist ant as ip iiiii!'iioI in ii 'I pittype. A more detailed de-
script ion (of thle P XlA Iprototvip(' cail be foundl(inl th Ia l(ciliieiit -I* BlSA- PMA Funictijonal
Descr ipt ion" .in Section 6, a suininary is followe b% (1c\ i(oncludinig discussion of somec of
the irrnplicat ions of our approach.

2 Knowledge-Based Programming

The articulation and formalization of program design and implementation knowledge de-
pendls on the development of very-Ilgh-level languages: the expression and manipulation

of abstract, complex concep~ts requires suitable notations. The history of mathematics
anid chemi1stry demonstrates very clearly how much progress in these disciplines depended
onl the emergence of convenient formalisms. Comipuiter science is no exception. On the

other hand, very- high-level languages remain academic exercises without sufficicntlv pow-
erfull compilation technology that can translate very-high-level specifications into efficiently
execuit albl code.. -*

The knowledge required to create a software solution to a problem can be divided into
general programing knowledge arid idiomns, and special application domain knowledge.
The former is captured by a set of transformation rules that translate a general wide-
sjiect ruinl laniguage into efficient code. The latter knowlvedge is represented by defining
siittal~c concep~ts within the wide-spectrum language (see 2.2).

2.1 Very- High- Level, Wide-Spectruin Languages

Soft ware dlevelopmnent converts anl abstract prob leni specification into a concrete imple-
nitat ion. Fromt the large set of possible imip lment ation.asqec fdsg n

iiipleiiint at ion decisions selects onle specific onle: each dlecisioni fixes somle of the det ail of
the event irnl solultion.

* ~The kiwet-iie " oftwar 1 ii'ult1~ Wttiiipts- to capture thec knowledge iiivolvecI inl tile
cnt ire soft ware dlevelopmnlt proc(1 ,-.. to ii; o r ;tholali it atll thle 5(ift war(lifecy cle activitiesl

and~ to (Hiterface thle users at varius le As . f rii l languiage used for support inc tilli..

-' 1)aradigril shiolild p~rovidle the(1111itinit1 it 'it itli liii ! il methods' of expressing differenit

asit-s(f it coiiiipitatiiiiial Ss'tetii ate fiiid onll% ')I relcvant details at ally Elvetil

lif'-cycle' stat .N1illy laxigit gescli w twl~sutil for (lifferelit stagc(ofsifwr

41a :%

%..

development, currently exist. These languages. although useful. are far from adequate *..
either for formalizing all the stages of the software lifecvcle or for interfacing with the
tools for anv other language or system. Instead, we need a vcrq-hzqh-lei'el witu ,.1prctrur.
language that can be used both to state the software specification formally and si!ccinctlv
and to cover the whole development range without having to cross artificiad languael ,. -
boundaries. .

In the knowledge-based software paradigm. software specifications are not only fornai;ed ..e (

but also executable. The process of deriving efficient implementations from verc-highi-i!exe
specifications can be automated using the transformational program synthesiS techniqul'..
In this approach. general programming knowledge is encoded as a set of trran-fi'atlli i,
rules. By applying a sequence of appropriate transformation rules, a very-high-level specifi-
cation can be stepwise refined into lower-level (wide-spectrum) expressions aind finally into
the target code which represents an efficient implement at ion of the original specjfiarTiol.
This approach supports the proposed lifecycle change in the knowledge-based software
paradigm - maintenance and evolution occur by modifying the specifications and then
rederiving the implementation, rather than directly modifying the opt imi'zed iiupleinenta-
tion. NNhen the process of rederiving the implementation from a changed specificaticn is
automated, the software reliability and productivity can be greatly in iproved. -"

The PMA is intended to be a knowledge-based project management assistant that supports :% .'d
this new software paradigm. It plays different roles, the most fundamental one h;,iiL, "the
corporate project memory". It is its "omniscience" about "wlio is doing what when why
at what cost" that enables it to be a flexible source of information to managers and a
resourceful assistant to project team members. Thus, the PNIA's most vital organ will b~e
a knowledge base, a central receptacle of facts, rules and constraints expressing relation-
between facts, and meta-rules expressing knowledge albut the use of rules and c(,n)itriit> ;,4.
Clearly. the utility of the PMA is a function both of its ability to rea'on about facts and to
do so efficiently, as well as its interface to human user,. It is therefore of priun iiiict an,'," "
to employ a language that allows the formalization of km wledge th It i convenienT . I ;ITw

the conceptual level of humans and efficiently manipulable by the PM A.. '

In order to achieve these somewhat opposing objectives as w 1l as to inlcrea-.e' , (" t"
productivity, we have used a very-high-level and wide-spectri,,in latitagt'. RFIX'. "

to develop the PMA prototype. The REFINE language was desi gmd extlicitlv fo, the-
purpose of capturing the software development process anl siIportin th' km ,,.
based software paradigm: it allows a variety of prograiliit eif'1itj sTvl,- t
suitable for encoding the different types of knowledge require , for tlie PI.-\

" Object oriented Rpecificaton: the lailig ;L, s(i];,t 10 (t i t 1, ' 11i, L i; , , C:.. ."

of objects and provides an inheritaic, 1!; :'111. Ihii- fe;tt lD ' I.- tI.. M -A
to moldel different kinds of objects in t ! i,"!,T(ecet fa lle dh l; l. Ii ,e, .(:oPa...t -

the various relationship among the obj ,'t -, and to) exp r "> class faxt :: - ,---:

inhie rita nce convenient ly.

" Firich oT .prczficafi,),7 . rectirsiv, fuicti . ,a u,,,. 1 t,.i:,, , .1 , , - :all ptl en it itt ion. or 1111pl, , t v , 'f,'~ ,: ,,y s, -.,1 c, I,' -f ,i .i, I . ,"-('')f.- .. C,

,- - - . -.-•.. -..-".. .. . " ". ,
% a. %.

% .. ~J.
.......

the system can synthesize an implementation. The latter allows functions to be

defined in a more natural and declarative wav it frees the description of the problem

from the responsibility for efficiency. .

Logic qpecification: the ability to define functions implicitly provides capabilities more
general than traditional logic programming languages. In addition, logical assertions

can be used to constrain values of program variables. This feature can be used to

automatically update dependent variables or to warn of violations of system integrity

(see Westfoht [331).

Procedural ,tpecification: procedural concepts are required in order for the language
to be "wide-spectrum". They are "lower level' in that they are closer to the archi-

tecture of conventional machines. But procedural specifications are also a valuable

specification concept in their own right; many algorithms are best described proce-

durally.

The REFINE compiler is a knowledge-based transformation system that compiles these
various types of specifications into efficient code; it enables the software developers to

program at a very high (specification) level.

2.2 Reuse of Domain Knowledge

The formation of domain specific knowledge is only possible after suitable theories and

models have been developed which generalize the concepts and knowledge implicit in ad

hoc solutions. An approach to formalizing concepts underlying software engineering envi-

roriments is described in Section 3. Here we focus on the general mechanisms to represent

domain knowledge in very-high level specification languages.

e Subprogram.: this is the traditional form of reuse of domain knowledge. But clearly

the kind of parametrization available in traditional languages limits the usefulness
of subprograms to capture general knowledge.

* Abqtract data typcq: these are slightly more general. Techniques such as algebraic
specifications are satisfactory to specify the formal semantics of abstract data types. -

Bit they do not provide for specification of pragmatics and alternate implementation.

Lack of this information in the domain knowledge may lead to unacceptably inefficient

i ptilleilt at I I .

* ()j ft cia., ,C 01)ject s all l m.ti, ,i iII the sellse of Smalltalk also capture domain-

,kIwlerlte But a in the alov t-,, cases. this representation is still too specifhc.

* ..4 w,i- a 1d c ,,traivts." coitiobii d with sophst icated translation techniques ax-

i(,Iln; 1i ,ltiiiit II -prtcvilt, a highly fbhxi h,. way t secify knomwledge. It is nvces :iry

,2, df-fiii. th. t aIpropi at' ol,..cts aill co(ncepts in ternis of which axioim, can t,

4. /f f/ *......................-

%

it,. " -. 4 . - -. * -€ . ~ . -. - - .-..- - . .. •-. - -,, '.. -..€.......'...' .'. ." ".'... -. -'..... . ..-.-.. -- -... ,.- .-. . .-... -. .-.-. ..

*Tran-tformation ruleq. we believe that transformation rulles are a vygfeiieral forili

of knowledge representation. Instead of capturing the finial Iprf)(lllct (e.g. as a

data type definition. subprogram. etc) they cap~ture ilIldlViIuI sie~Of thea I)I("(C -

by which concrete implementations can be rederived. ..

In the following section. we describe how the technliques described above are usefd III PM A
for encoding the domain knowledge specific to software project mianlagemleit .

2.3 Encoding of Domain Knowledge in PMA

Software project management requires knowledge from broad areas. incuding

" knowledge of project mianagement

" knowledge of software development, and

" knowledge of the specific projects to be mianaged.

In order to provide automnated intelligent support for software projc magemnent. thfe
PMA combines various techniques to represent the domain knowledge forinally wit loin the

* system.

Object Classes and Associated Attributes. Different types of objects, il tie software
project management domain, sulch as coirpo72ent. ta.4 . ver.R?'0?1 PCr'~Ri)T. and datf arl,
defined in PNIA as "object classes- in applrop~riate hierarchical st nictures. At ty ril ntc

associatedl with an object class are dlefinled as mappings whose domain is tlie 01) Woct cla> -

These mappings provide a general, canonical mechanismi to interrelate and annotate tia
*objects in the knowledge base. For example. to capture the domiain knowled[ge almlit
- ~ milestones, we might define an object class milc.qtonc with the following attriliute,:

object-class mizlcston c

at tril~te of- ta.qk (niap imig no .tanv fa-4 tk4

In i sict -dfes criptio i (11mappJingC M mtI jif.toriCe Trii2.

dur-dait (mlaipili 77111(.4o071(date

datf:-comrpltcd Nlappinit mu i/f) -. 1d2

9cr J " /7 11q, 7fJ R01

IG

-- a-~~~~~~~~~~~ .* .*.,%** * . - * . , . . .*
.%* -%.*..'" . .- %

. F.. TU JW. JWJ W -U . -VWV W 'J 7 ,: JV .WVV _Vw~ C W JI . . .' ,V , "V j rt V."*. i, L'P Y T, "" T \, '. '. . ,. , -... J. r e

Axioms and Constraint Maintenance. Attributes can have their values either stored
explicitly or computcd on deiand. In the latter cas e, an axiomatic definition will be given
which is invoked automatically to compute the value of the attribute when it is needed.
For instance. the value of th attribute rcwnazinig-duration for a task can be computed on
demianld:

at tribute remainig- duration : (mapping task -- duration)
computed-using rcmai'zng-duration-uptodate %

assertion rernaininy-duration-uptodclc .

tsk is a task

A (duration tsk) = dur
A (actual-start tsk) = start-dat -. '

-- (remaining-durat ion t s k)

(subtract-duration dur (subtract-dates *today* start-date))

A data-consistency or policy constraint can also be specified in association with an at-
tribute. When so defined, the constraint maintenance is implemented by attaching a -

demon to the knowledge base object representing the triggering attribute. The demon is
invoked automatically to check or enforce the constraint whenever that attribute is set or

modified on any knowledge base object.

For example, to maintain a constraint "for each component there must be a task to build -

that component" we can define a triggering attribute subcomponents and an assertion -.

each-component-ha.-task as follows:

•.%' .'-

attribute subcomponents : (mapping component -* (set component))
maintaining each-component-has-task

assertion each-component-ha i-task

comp is a component
A s-comps = (subcomponents cormp) e

A tsk is a task which builds comp ,'.-.:

(sub-versions tsk),; , ,

t= ; { k: s-comp E s-comps

A S-tsk is a task that builds s-corn p
A s-tsk produces tested component s-comp}

On the other hand. we might want to check a constraint "each task has personnel assign-
inet two weeks before its scheduled start' whenever today's date is updated and give _K_
warning to tle manager if this constraint is violated.

%.
.' . ° . . -%. . .o ,- - ,- ,., .,- .- -- - - .- . ° .* . . ,,- - . .. o ..- o- - - .- °o - . . - .° .- - . .- ,." €. ,,'.-

attribute todays-date :(mapping date --+ date)
checking pers-onnel-aqsiqne-d-tuo-weeks-beforos-,ch ed ide d-.qtc rI
complaining warn nI _-of-nlccd-for-per8tinfl-a.qgq Tl (7217

assertion persornlagld-t-z'-bfr nch c~-~ir

(scheduled- start tlk) = -t%
A today is within two weeks of %-s e N

(personniel-coininitinents ts) 1. .. %

Transformiation Rules. Transformation rules, are usedl in PM\A as hia1- level 52)(cif

cations of test/action programs that encapsulate state t ranisformnat ion, In thfekro, el.

base. When using rules to declaratively express the state cliaiiges,. nmicl pro(essilw 1 Can

be done automatically without bein-, explicitl-, stated. In PNIA. the stepwise reiiieriiciit

of the component hierarchy is achieved by applying the following tranisforination rulec:

rule refine -cornpornent-inato-subcomponen.q (romp)

comp ='the-component Kqcorn p-nam('
A su bcornp-names =(get -sulcomponent -names-froni-tuser conip J

-- 4 (subcomponents comp)

- 'the-cornponent Casubcornp-narnc' subeomp-namc E subcompiin,u

Besides the techniques mentioned above, PMIA also uses conventional procedures for defin-~

ing certain operations when appropriate. Other tools used in encoding PMA Include ,

pattern language and context mechanism which are briefly descibed below.

Pattern Matching and Pattern Instantiation. In encoding PMNA, a concise patternl
language is used to describe networks of knowledge ba-se objects connected by the valuef-

of specified attributes. A pattern can be used to either test whether a given knowleIc!e

base object matches it or construct a new knowledge base object which matches it. hII

the above example, the first use of pattern ('the-comnponent Acomnp-namC') is for patternl

matching, and the second use of pattern ('the-component !'isulwonmp-?arn1 is for patten I I

instantiation.

Context Mechanism. A context mechantsm is used for iniitainiing ilexpciieIsVe(-e-

to each of a collection of distinct context3., or st ates, of the knowledge biase. -Nwtithowts~r

each of these states as a separate copy of the ktiowlcdEe base. The sct of contcxt- :- tIt

structured by the "successor state" partial-order. t hat I", each context liodfi nI t"! : 2*- \.

(except the root) is a successor knowledge-baso staite to Its parent conCtet. olht a;TIU(I",

some incremental change such as the traiisf)rila 2101 of a sinfgle node. Tlies.' chjino- ;i.

stored along with other inifornmat ion necessa ry toC ret urn the state of the kniow] dl, a,

any given context ini the tree. Tile conltex\t mechllaini providcs at t reniendoi. '22 III-

space as compared to saving a complete state of thle kiowledtvc base for each coii' am:.

a similarly large savings Iin time ascomparedI to regemierCTNT1112 imlccesT r conitexts 1V -1;:

over from the originial and] redoilng patof thec traioj.fommii;1tIomi Is 1 1i

% %
% '~

..****Z % *. ~ ~ .j, *. .-

i_ he PMA Model for Project Management

In tltis section. we describe the framework of PNIA on developing a model for software
':-, Incc I ana cmeit. First we discliss soin of the global premises of this work.

A basic ob>servation is that (software project) planning and (software) design are closely
related activities. The task of tlh software designer consists in exploring the space of

of of aternati("and s°ectinpossiMc iiiilmentatiois that sat i fv a given specification. The design process Consists in

successively investigating the consequences of alternative decisions, and then selecting one
of them further narrow the space of admissible imilementat ions. The design knowledge is
explicit in the decisions taken but only implicitly represented in the final implementation.
The capture of explicit design knowledge and intermediate design stages is one of the
element s of the knowledge-based soft ware paradigm.

The task of the software project manager consists in determining a subspace of the space of
possible project states through which the project should proceed (project planning) and to
ensure that the project stays within the planned subspace (project control). The space of
the project is determined by many factors: the target system to be built, the development
methods employed, and the organizational structure, to name a few.

Different approaches to software development and maintenance, as expressed in different
life-cycle models, differ in their underlying project space and the restrictions they impose
on project progression through that space. Shortcomings of the different software process
models consist in failures to adequately model the space or in restricting project progression
in a way that is incompatible with the complex interaction of the factors that determine
the space. For instance. Daly points out the, interdependence of target system structure .-

an(the develoI)ment organization [11]. Boehmn discusses the conditions under which one
of the various process models should be selected [9]. The qpiral model, described by Boehm - -

in the paper cited attempts to integrate the different models in one unifying model. The
spiral model suppo mrts the ex ploration and co-evolution of the target software system and •
the project plan.

Our work on project management assistance aims at providing a tool that helps the project
mianager in charting the project space, navigating through it. and recording a trace of the
project's journey to allow for backtracking an] i,ost-mortem analysis. The PMA therefore
provid,-s a mechanism fo recording not omir] different software versions aid related doc-
uments but also the evolutionary steps of the project plan. This mechanism is based on
Polak's software engine'e ring envirolment model [30'. We have started to investigate the
f,,rmahizat im of refimenwlit s 1i" I in the dlevclopmeit of a project plan,.

Versions and Derivations. S, fmv>1:, '-.,,, I i I ;I', f ',I_, imt is corp-,tanitlv confroriti (.. -v1
ti , , fIt 4 c l'} a 1 i 1 pla 1 w li,' , ' , , I f , ::l i ,l h; m ,e' to req u ire'm eim.!t-., 1),'r . 4

n, . ,)i Dii, to the, iii, t',m ;im ,i,' . tiviti,. ti, tasks of ctia vg, co lir,, .

(I' !/' ??1' 0* (a l .' i 7 t. o' 7 177 7, t; 10 1* *7 A 1 7? 1 a 7i r .Ahlra hwun.t * J4
l

il
%

t' . . , 1 I d 'i CO M ;)7ll '. l0(d , (/ d,, 7. (7' . ,1 1 7(7,: ' de 'r

Z Pi r. ei o t J4 . (, ,

-2 : , -1- - . -° -. --.. . . - .I - "- r ". " •

• , o O * 'o - = ° ° - -, * -. ° *. - , , - ° . -, o-.• .= ° -- •% * -I. .

.," ,",",. .-" -","d '- " ",:,' ..r- ...,....' ,',.. '..'..',,' .% . .'. ".. .'....' .-. -...'-"-..., .. ," i-"-''°' '. "." i ""' " ""'"."''"-"-" ,' "

thrtead, and relea,lC mana aqewct have become itricat, alid (lificult to inangc. Til-i, .j"
especially true in the environment of programming-in- the-large. In order to iprovide ;m,,
mated support for these tasks, a model for descrili, the different types of ol Uet -in th.
software project management domain, the interactionis aimong themil. and the diriva i m

traces in the evolutionary history is developed for P.MA. This iodel is built on the w,,rk,
of W. Polak [30]. which we will briefly describe below. %

3.1 A Formal Model for Software Engineering Environments

In Polak's formal model for software engineering environment, an environment is defined-
by specifying a set of domains, relations between domains, and the semantics of aV;tlle-
tools. Environment objects are divided into disjoint domains, e.g. program niodiles,.
documentation objects etc. v'hich share the common properties: p

" hierarchical structure: how is an object composed of subobjects.

* dependencies: how are these subobjects interacting.

An object is modelled as a node in a flow-graph [25]. Each node has a number of labelled
input ports (references) and output ports (definitions). Edges of the graph connect input
to output ports with the same label. To represent a hierarchy, each node in turn represents . .

a complete flow graph describing its composition.
I

The objects modelled represent versions (or instances) of software components. documents
and so on. A component is given as an equivalence class of objects. The edges of the
flowgraph represent the "requires", "references", or "calls" relationship: the nesting of
modules represents the "is built with" relationship. Different kinds of dependencies ca1
be represented within this model by using many-sorted sets of labels. (Sub)objects can be
shared among different composite objects and logical assertions about properties of object -
can be stated without having to account for in-place changes,. . '.

The semantics of an available tool in the environment is given by the effect of the tool's
application on the state of the environment. For a particular organization, rules and
management procedures can be stated formally. Finally, one call express goals to 1w 9.
achieved. Such goals might be to "release a system". to "update docuineit atioll" anmd ..

forth. Given the right kind of high-level concepts. such goals lbecomlie simtiile specificitiOml %
which can then be compiled into programis that achiev, thf goals...

3.2 The PMA Domain Model

Based on Polak ' model, we have developed a taxononimv of object classes where obie'o- .

evolve in the software lifecvcle have each of their save%,d states classifiyd as a r.

certain dom ain. such as r c qOiir¢ rn r . ,R oi, rc ('di d . d(oc i 7r, ?ti. t, 1 ra.4, etc. aiil t , : 'i ll

1 0

!...._*-

-... . -~~~ ~~~~~~~~ - - ...: . . -.-,- -...-. .- ..
- . . . -% * -" - ." . ° " " -. • - - " # % - . - • ,. - " , • . . . ° -, . • ,. • . - . , % . " _ - %, , ". .

W .

of (i:~ *~-1 T~ W~ 11C. Vol o:,e , v' 11- I Cii. C;1)-ulat ed iii derivations5. The general
stnjIjsanf TT47714 ijIdcz il.oI gisi unificd view of the steobesndonmengo
niniitw aud thei chng,, Fo S1,q ~ a rjc maae em objtectsvirondelting

0 (~7..) f t1h CJ(:1(1 VNI~ac t: Basedl on the prjincip)le of information hiding. inter-

fa(*. C) 1 mog .'ource versionslk are7 relcognized so that thle propagation of changes can be
minmied Firtlirinre uIng.n l gran ular ty, change impact is localized down

K * leveltolie obct (fuinct ions, variables, types, level instecad of the conventional file ..

aittonatzo Of t.t,7 bud procedure with minimal reloading and recompilation:
iiiclutliiig dependency analysis front source code, data flow analysis, file-loading-
sequenice dectermnination accordling to dependencies, and incremental loading and
comilii tion.

*change control and consitency checking: including giving warnings when inconsis-
tencv is detected, enforcing change authorization or approval, recording reason of
change, and tracking derivation history.

* support for parallel development and individual development threads

* friendly us~er interface: including graphical display, graphical editor, and menu- .

% driven interface.

The PNIA models software project management knowledge using an object-class hierarchy,
where project entities, activities, their attributes and inter-relations are defined. This
object-class hierarch,, is illustrated in Figure 1. An example of the object-classes listed --

is Vrion. which characterizes saved states of a project element during its development
process. Version objects are further divided into different domains (subclasses) including
Ta.q k-Plan. Requirement. Specification. Source- Code, Test- Case, and Document. WNhile the
(details will1 differ, all domnains share the common p~roperties:

*hierarchical .structurt: how a version object is composed of sub-version objects. e

InI thle domiaini of Documnt. primitive document obj*ects can be grouped into sections.

chapters, and miiuals. The hierarchical structure of a document could reflect the
hierarchical structure of the program being documnented. If the program exists III

(iiffcr(Iit configuirat ionsi t hen so does the associated document ation.

III t lie onalil of Req a r ~rv. t he st ructutre of requirement objects is import ant

Ato rte requmi ireliimt to ii idiv i(I ia rode miodules in order to check comTplia-nce arid

fil1t at e enliamle'ice e after cltaigimg requiremnits.

illileri-or),f. t lie () Mup0n ent ver-,I(ii lieratrchIy ario the taqk version hierarchy, t oget her

C)Ose(, thle Wo rk Brca kdmi an Str act are \VBS) which support s a general approach to

or[iail ing j i ft ware pri ct. ThI i \ B S is levelopvel (hiiing project plan forn al;(oIi

aii 01vie fleai fori projecft nionlitorlina ala1 conItl).

% 11
P 0 r

..
--.---.. n r.

'Version- Class Ts
Component

Task-Plan

Requirement

-Specification

Version
*~~ Source~--Codeq

-Test-Case

-Document

Release

-D erivat ion

-Derivation-State
Project-Management -Obj ect 4

-Dcrivation-Delta

-Configuration

-P robl em

-Product

-Comimiti.ient

-Milestone

-Deci sion

Person

-Evcnt

LSpecific-date
-DuratiOn

Fizurc 1. P\IA Object ('lass Hierarchy

12

% %
% % %*

" derivation trace: how a version object is derived from and to other version objects. %

The derivation trace of version objects provides an audit trail of system evolution: it

allows for rolling back to a previous project state as well as performing post-niortei. ,
analy sis.

.% %or.

" dependencies, how are version objects interacting.

A representation of various kinds of dependencies between documents can be used in
a number of ways. For example, after changes to a document a new, consistent set ,"

of documents can he compiled, or a minimal set of update notes can be prepared.

Relations and dependencies among requ7irements are useful to structure and organize
partially developed requirements, and to analyze the impact of changes in require-
ment s.

Source-code dependencies in terms of interface:s can be used to automate minimal
recompilation during system build.

These common properties are characterized through the following attributes of the object
class Version.

object-class: Version .
attributes: version-for : (mapping version -- version-class)

,,, maps to the equivalence class ,

associated with the version
version-name (mapping ver.sion -- symbol)
initiator (mapping version - person)
version-time (mapping version- string)

super-versions (mapping version - (set version))
sub-versions: (mapping version - (set version))
derivation-in • (mapping version derivation)
.mports (mapping version (set symbol))
exports (mapping version (set symbol))
definitions " (mapping version - (set symbol))
other-dependencies" (mapping version (set symbol))
version-release (mapping version release)
patched-file-name : (mapping version -- string)
verdsion-staturso (mapping version - sy ibol)
prcdcssor-ersions • (mapping vcrsion (set version7))

successor-versions (mapping versIon -~(set vrsion7))

approved-by " (mapping lycr.,zori (set pcrsoni)

Using the project model supported by the PMA - knowledge abo)ut the projects to he
managed and the available project res,irces caii be representd((1 formally in the syst,,iii
The capt ure of this project knowledg, provid(ls a lasis for the understanding of aItd flirt i

reasoning about the project space,.

Other knowledge, required in softwvare project mna1ageienit im,'lidts softwarc de'vcb'l t, ,'I

methodologies. ia nagemiuit policic. data acc.s J)riv l,,i,.- (18t a c() 1-i -t, n' 111 r,,ci lt

13

N0 - -:..-.

-- . - -

anld so oni. For Instance. ther ti~ be rLwitiI in t1j,- It .' i;

assurance and dlocumnlt ation requruilt'lts that nleck t - 1 III it b1 teft Ir i)t fr\V1Is

Cali be released. These miet hod, lic>. ict'. and ((Mit rauiits can lit ftrli :idiz'-1 Ii t , it
PNIA systemr using logical assertins jiti traiisfttrin~ii nil(s. They jiIIjOstC ' retnti ion>

onl project progressionl through t he project ,I~ac. 1B3Y iil)iIt or: tiig thlese cis u tl~ ~ *

PNIA can support the prevent ion Or (letect i(ii of coustlan.itia t it)ui of.u liteni to (1dit(s *

the Sv-st euils act (ions.

For example, take the obv\ious constraint that for any t a lk (rs uinel asgnut>i n t

made by the actual start date of the task. Byv alerting the nialinger rosjtttuisi~iti llied of
timie, the PMA helps to prevent at violat i() tnOf thlit Conistrainit. If at violaIt n 1 e> tOccur,
the systemi may react by riot ifying up~per- level nauiiageinint This also ji 1s t rat OS lit tti,

PNIA canl use its knowledge about thle funlctions and resi o(isi bib ties of peoplte to Vt itc0

messages intelligentlyN.

When the N-axious software development methlodologies are formalized III thesvte(.w

can implement Boehm's spiral raodcd by specifying the Conudit ions under which One(Of I lie
methodologies should be selected. As a result, the PNIA will1 support a robust. risk-driven1
software lifecycle model that provides guidance as to wNhich comibinationi of previous mlodels
best fits a given software situation. Although not inicludied li the current PNIA prot otype,
this implementation should be part of the PNIA follow-on effort because of the significant
productivity improvement it Cani bring to softwar-e deve(loplnent.

4 The PMA Model for Time

4.1 Background to the Work on Time

NWe have devis;ed a new syst em for representing tinie byv meanis of tin e Interval>. fIwr
builds on the work of James Allen. who, in [1,2], suggestc (0iuing interval rejurt -en t at "it ta

of time for planning and other theories of act ion. Allen's wvork ha> been oi(ceriti w(t Nvil
convtex intervals of time, that is intervals which have 1no gapjs III tIII lien Vi T k li a- lwt a
used antI extenided by Allen. Pat H ayes., Henry 1Katz R/.Pichard nt Pclavi ii an liw tli s3.4 2

Thle use of intervals rather than points for tilit represeclit;0t itt 11 ;v as , heotli sm~. t

logicians and ot hers inve'st igat ing t emporal lo gi c J32,1G.1231 .12.26'. Allc i i t

there were precisely thirteeni relitioiis that c-otlivtx t hutc ilterv;l> tt1;Ilit\(T f ;t. !I

iiiclIdiiTig equality. asrnixig that timne is liit'ir Alit , a >ho\f' 1p s lt v tiuuu It11t11 (,Ii';2
and perforiii calculatins InI till, interval svsttni]I,

onlvex interval lo k like thl

Sonic exaiit'sf o)f Allenis relations1 at

%
%". P-

% .- .

% r

" peces which neaiis i Vl efoe andu tere i- noi gainterval) separatIiiT- themi % .

" i ptrtcds intuiwhich meas th isaifoe startn threint as itva oterwis stlictl

contained in j

and there are ten others-, briefly:

" equals

* overlaps

" ends, during, which are different forms of containment (along with starts)

@ the converse relations to all these (except equals, which is symmetric)

This model of time is important for its unification of the many aspects of temporal rcat-
* soning needed for effective project management. For example, in work in progress, wve
* have shown-i that a quite general class of scheduling algorithms may be defined functionally

using the implemented interval model augmented by one new operator on a data type of
weigh fed- intervals. which are easily definable from the basic model. This work is a sigilif-
icant step towards syntliesi7zing scheduling algorithms from the basic interval model, and'
such a synthesizer is part of the vision of an automated PNIA. It is our belief thait this,

* could not be satisfactorily accomplished without a sophisticated miodel of time such ats has . -

been imuplermented for thle PMA.

Adhit ionaillv. there is the issue of port ability'. The PMA should rely as little as possi lr
On thle speCCIfic dvelopmenCIt hardware. The modlel of t inie we have develo ped lin pleiiiet i
calcuiat ions tliha t otherwise wvould have to be accomilihiled by systeni calls to the Svi iii 2,

tinie package. withI thle except ion of thle call that ret iirils thle current clock valuie ail~ III*li
*call we%- regard as an essential ftunct ion onl anyV machine which would support rt l till:

funictions, of tile sort needed for thle PNMA) T1w Tis llows- thle P NIA t hue m ia lA! ;1t' Ze

portedl to an,, miachinle suipportinIii the REFINE Nsstclin. with the redefinition of ii

fiict ion. rlearly identified inid tiv\ial to rewri t '.

%* %

%5 % %. % 5 . -. .

V.'.

4.2 Reasons for Extending The Model

Ve observed that convex intervals are not sufficient for re)rc,elt ilg all periods. Stop-st art A,

processes, and propositions which become true. thel fa;se. thel true.... cannot be assigne'd
a convex interval as a time parameter. Rather. the time parameter is an interval which is .'-'.

convex-with-gaps, or. as we prefer to call it. union-of-convex.

The general union-of-convex interva! will look somiethilg like this:

d ___ _

For an illustration, suppose we are representing scheduling of a processor amongst multiple
processes. A process P will occupy the CPU in time-slices, and there will in general 1be
many of these time slices. Other processes, or the system, will be using the CPU interleaved
with P. Thus the time period over which P will have control of the CPU looks like the
union-of-convex interval in the picture above.

In project management we can find ample examples of how this extended time represen-
tation is useful. One of them is to express periodic events such as a project review on
every odd Thursday. Another is to calculate a person's availability for further task assign- .
ment knowing the commitments he has already made. The time range and effort level of
a personnel commitment can be conveniently represented as a weighted union-of-con ve.
interval. An "aggregation calculus" for weighted union-of-convex intervals facilitates the
summing up of a person's present commitments and the calculation of Iis availability.

If we had a wav of calculating with union-of-convex intervals, we could specify many time- ."., .

dependent problems and their solution in an elegant manner. We would be able to include
the time dependency as a single parameter, and then use the interval calculus to derivQ . .
the results about the time relations that we need. Our work on the specification of time
dependencies using union-of-convex intervals is a promising start to this investigation. A
prototype time manager using the results of our investigations is used as the basis for time
management in the PMA.

4.3 The PMA Time Manager .

4.3.1 A Taxonomy of Relations

We have developed a taxonorimv of ilations 1).tw,,(,1 1ii t4 -)f- i tc l*\;1 ju W 1r1a , w 1"il
vides us with a rich specificatiotn langiu;, e for ti 1 , 'ifl ,,tij ;-,,I, ,-- t;--. : w? I,

processes. and propositions.. This work has F2.n0np t im, '2(1..-

We give below some examlilth,> of tle many relniti,, a- ill r a , ,v. In tl,+ ,X;t1:p.1,-
a maiconqubmnt is a single line s nt. t Tlw nal I- ;a rf .i'.()l7..(J
.ub2nteru'al. which is the' aIplpr,,triatf. m]HOt'l,'m ,'tr ,Iti:L:',,:. a, ; -,miiUt, 1 i 1l... ::,-

ill tile diagraiis below,

V%- -'°-,-
"

V -V %5 06, *qN . % , .• ,," ° .•.,... .• . . -. . - - -..,'t''-foP,.0, " °" + " ' -"e "

I% Is. % i*
% % \Z .k J I

" i alw~ays-rrieets hit Itiltively. any nia~cOns~ubrnt of i has to meet a maxcoiisuhni

of j. and everyv iaxconsulbint of j is mect by So1l11 raxconsublint of i.

" i always-(precedes-or-meets) j. IriuitiNvely. every maxconsubint of i either pr--
ce(les or mieets sonic maxconsuhint of j. andl every ruaxconsubint of jis precededl by

or niet by somue ruaxonsui)nt of i. -

" i disjoint-fromn j Intuitively, i and j have no subintervals in cormmon. (All of the -

relations illustratedl above are subrelations of disjoint-from).

" i always-starts j. Intuitively. every maxconsubint of i starts some maxconsul)int1

of j, arid every maxconsubint of j is-started-by some ma-xconsubint of i

" i contained-in j. Intuitively, every subinterval of i is contained iii some si)Intecrval
of j -

*i bars j. hIt ii tivxely, t he -union of i aid~ jIs aI conveX Inlt erval.-

4.3.2 Interval Time Units

W\e haI've ;to I e(If. imed a IVsIf'Io f 'IIterIVal It Ill ITIe T, wvhich is very fle\ible. ;ilil c;,I.

lincorlporite ;Ill Ill" normall units, o)f tlime wilth wh11ch e ir.Sluch at, years. (hayK 11111:11"

.aLA a, A V.'N . .16 A ------ A A A . . ~~

- - - .- -

- b " % %picosecouck. wes ia.. Jllnuarv . EiDtwvs ,f IaIiiiI. 1 'i:
has been inpl iented,(ui , to the level of t i-]I: !"' i;,- l" -
used as a bas oI th, tillie IllaiIlag l ()f }i. P..IA. ThP of ,Jk ha- , ,,, a , ll '21.22" "

We use sequenlces of ilitegrI'- to rteprese-e it our st lIdrd tiil(TIi . 'TI., s.qiia C.C, ;tr" J.

terpreted a contaiinig cntrie, ('()rr('sl ()Idirig to stall'lid ti lie.]c- t . ie. year, 1)Ollth1 .

day, hour, iuii nute, second arranged as a .,qi jwc-- fItlatr tt l giving ;I , fil'-
tion. we provi(de a saipl' of units below. along witIi t he itcrpr'tatiom of each niti\i. ""e

illustrate the units dowi to the level of granularity o)f ,soC, . 51) our s((quieIi-,s ii tl.

example will have lengths of up to six eh-ioent Clearly. the syvt eta - eailv exttndhI S
to sii;tller units such as inicro .('01l 1-., simply yv -iI 1,, 0cii S ,-qr Cuelee"

" [1986] represents the year 19SG.

" [1986,3] represents the month of March. 19, 5

* [1986,3,21] represents the day of 21st March. I9SG

" [1986,3,21,7] reprcsents the hour starting at 7am on 21st Nlarch. 19SG

* [1986,3,21,7,30] represents the minute starting at 7:30am on 2 1st March, 19S6

* [1986,3,21,7,30,32] represents the 33rd second of 7:30am on 21st March. 19SG (the
first second starts at 0)

' '-" % -%'

Other important periods of time. such as weck., Mfonday.*. Januarys. Fir.t Day. of thr .
Month, Monday,-in-January-19S7. may be defined from these basic tile units in a simple
manner using the definitional apparatus available to us on the svsten wv use at Kestrel

Institute.

4.3.3 Operators

There are certain primitive polymorphic functions on intervals, sets of intervals, anld nuno-
bers. that are required both for a full specification language, and for the imjplenentat ion
of a time interval system. We have reported on these functions in [21.22]. and we, hiay,
made substantial progress o implemnenting these functions in the tinie ini ager.

We ilutrate with a pictoril example of tile operator conoh -m'

Suppose the set of interval, is A { i ,j , k } where i, j and k are

e -% P" %,

, .p ,a,..% 5*,. ,.*% ' . % - - '. - - . . - . °. -- .* -. - % . * .- -, . .-.. .. ,.,.%"*
ai ,d " 4 ." .,"- " .° *4 5

. ." . ' . ° . - ' F . .' . ' . " .- . S ." . " • • " , ° • . °," - " " ,t - " # -" ° ., o" "
-- ' ", ". % '% % ,% ° ". % ". ". °l, - " - - . ° -. ' " - . "".. •. % ". ° . °' . ' " % " ..a .t° *". " A"

Theii coubi ne (j{ ij, k }) will be th li Miterv-al

F ,

of th-e rtions dia an' te taxoenom iofl anlongiie rve reaton ar alo'peiet

4.3.5 AdpleinatiWonk

Duen have metonredo thaigtin nrea systeeunihs been imopleatene into the le. ve
o ranulat ofldnys randione s ted asrlis o theb in te manaer ofl Tarqs 1e17 P1,2

are havipeneiglated~ the mtiemtca utsPriutive operator's sugebra minte n so1timt

oflathens reaIns inth okwtaxnm Rof union-of-cowe reatUionsire als imhavel ovee

inerals foample. o or tkenitsdge by uig the omns oeagt. a asbe roe

oultmtlwrihticroaetefl calculus of rltoso union-of-convex intervals, asi ankIscrety en vitl
abstrc rubliation. agera ih mao rseil purpe thornem proivie ak tSISa

diaod th at A Allen'sonfrelatins formedrelainaqbai h eseo a~k I.S2

e1 hAv invtityed Artecmthrematical sructre tof llnso algea witte, intton1d

and anIearrpe. u knowledgeta,,issna th th only Msuch Dagthmas thatBD hase roved-
corect. il Further joint. wor wisthntl todu hasB clriied theA rlm ai-lgeaic rutr of ..('l".

oIr caloublus f relationsronec uni-f-cnvexnterals this work is crren,,tl bfeing itte
upfor publition ane teheia maortwreultsveropen noed atoinited litalksat SI. Sitanod

%. %

th mutof drudgery for both' mniager,, aiiu s;nwt - l1i(,v

to accept the PMIA if it does not impose extra work onl t lcIeu. It al-, fA v> : teXle;

of the available information without having to rouitendI witlh art ieii L nh;ri

The imiplement ation of the PMA used thle progr-am ynl I> t cchil o g d (, CriL~dI IIie

tion 2. A summary of the functions and interface of tie cxllerlincnl;Q PIMA p~rototypeN

follows.

5.1 PMA Functions

Below we give a cursory description of the principal! PI'A flnt iOli-~

Project Structuring. The PMA prototyp~e suppor-ts a fairly genleral apj ro'Acl to st rue -

turing a software project, i.e. to organize project activity elements, into the Work B k

down Structure (WB3S) consisting of a comnporieri-7irqton htcrarchy and~ a ~s-'T~o
hierarchy. The two hierarchies in the WVBS may be interrelated in different ways depcii-

dent on the project; they are developed in the project planning phase andI provide the.
basis for project monitoring anrd control.

The component- version hierarch,, reflects the breakdowN,, of the overall software systemi into
planned components, e.g. subsystems. modules, and routines. The task-Version hierarch,,
is a hierarchy of activities: the task of building the ovecrall system is successivelv broken
down into smaller tasks. For instance, the task of bu;Ili it comlponlent cani be divided...

into designing. coding and testing that component.

The PIA allows the user to perform stepwise refineinicit to the comiponenit -v(Isloii l~iera1-r-
chy; it maintains a constraint to ascertain that each comlponent has a task to build it. As
a task is being refined, the PMIA also monitors thle allocation of reqllirecl pcr5 iirinn effort
and duration to its subtasks. It allows thfe reffinement of a task i1lto)a sqec fatii e

including design. prototyping and test, and assumes defauilt allocation Ipercelt agfes iilllfl -

the user overrides them. The P.IA also maintalins cert a dait a consj4 elt(IryN conY r;,Iit 1 as --

the project knowledge base is being updated.

Task Scheduling. The PNIA calculates, earllie t 1a(1ii lat-1 11 '1ii tt nu ti-l I~~

for the tasks in thle project based onl thle task depeuldc lei> aId l1i rlw)leet sat a lld, fi i-h

dates. It calculates tle criia paths inthe sclie'(1thf l'a>'ol onI tile etl ;e- 711i te s

andl finish dates for the tasks in the project. It V(.:, m;l(- tasil ,ll'' ,';, i ~
manager to pursue a phlosophy of evenly Owalii tl teai ni1:.i'' . l UI:?

early' push or late push in the task. It 1)rodiiee> Peit a1:1,1 GA.\NTT cliirts-

% %

%

SS

Task Assignmn- t. InI thle P NIA prot otypz., IT I'S au thilr citc t ask inl thle r a:-

hierarchy of a project is givenl anl est i mAtc of' pciatie 1 effo)rt requiiredl to(conilWt e the N

task. The fiuict ion taqk a .q 177? Tn vt serve> toI alss)cliatc a giv~en task withI pers II it t .
a percent age of th Iteim he. Since task1 'ijn1 e tIs onei(of Thle area~s Ini project titan

ment that requires htonatt Oulgincte . dii, P NIA pr,,v ides. assistance 'but leaves th(iweat1 ml
assi gnmuent choices to tt iaicr>.

Specifically, the PM A prompt s t ask nmnager> for pc(Uiile 1 a~smiiit s totaksI

start (late is wvithini a certain.iiiaae-pcfa. timei span1. It displays a niultiple'-cla ic

mnul listingo t he pepeavailabhle t ogethe 11wit I heraialiitv percent age.tcek-

wht tilwr a task assi gnmnt etit ered by a mianager 51 tisfies all related constraints and(c e

xaiig if ntot . It supports motlt i-level task asslinmn

Policy En forcemre nt. Il eatch orgattizat iott. there Is a set of jpolicie, amaid proced itl

that goivernt the software process. The PNIA 11(11)5 to enforce policies and procedito>- Iy:%:
preventig violations or triggering renmedial events or act tons.

In. the PNIA prototype, policies and procedlures, are expressed itt a very-high-levellaiur

as logic assertins- or rules. This makes it very easy to adlapt the PNIA to cl~iitig

guidlelines 1111(I st andards.

Monitoring Functions. The PNI.A monlitors reqirernentr.-. schedules. alid cost. Amtht,
rized chaznges. and their underlying reasons, to requirements, schiedules and budgets cani 1e
tracked anid recorded in the knowledge base. This trail is part of the "project developmlneb
hIistory- t hat Canl be uised ill post -nortein aiialNysis and as a referetnce in the planing oif

future projects.

Jc?firrnri IA Moy torjn. The PNIA mainttains a mnapping froin requirements to0 sysiceli
comlponenlts that fulfill the requirements and monitors their development status.

Sch duh fa Mefuriqi. The PM A computes and keeps track of all the schedule (Iita inI
its, pro ilect kn ~if iwledit base. It mauntais comsisteticy, aritong schtedule dhat a. It mont t or

tin' ciwelideilcy relat ioi isltip amiong soft ware Conmponent s arid derives task schieduli ig c ii

st ra. ut ;sa-e oni t ha t It dlisplays lie schedules graphicaly using G ANTTcato Per
chi;i t upi ei ic~r s request. It also tnonitc rs lhe atial, progress of each schteduled task

thait p(Otittial ('-.e'. Call hw dletected.

CfO MI)7ttfltlif. The PI'A cailcuilate-. alt'1 tralck-. (xpe!idIt trsfor each task 1he-,1

pet-.il I10 a ,s Lii 'li~t s ltld expeitsf, of ;1:1 avent timei. Task progress is measured

1To 11i cr-(effuted iillestomtes. 0tt demanld. t~le PNIA (il~-)lv> plamiled cost, actual c(-1
eatrli-Il vabte g'raphilcally onilvge charts. It detea- (ot ve'rrunT and linider-ron ;il,!

early~ warlI-1tis to the, t as-k nat ir.

% % %- % %V %p % %% e. 4.

The PNIA calculates the planned budrcet f 'r- ea'Ii tI- II IlJ: P

expense of agent 's t Ime. It t racks act ual x pe ii dlIt iare> f~i i ca a
of work done onl the task auld expenie of agent s tii j. pisl)f L'ti - i :r' ICt
to user-defined ril est ones. Earned v alues of t a~k> an-(c!,"L~ 2 .d 1'

progress reported onl their associated mlelstoilet O i. 01 PM- I cii
cost, actual1 cost and earned1 val ue graphically onI tiaI'i' lyw c i

Version Control and Derivation 'J'racking. \i~ ' ' la ~ .

are based onl the version concept of thle eniiF)I1 ,IIT :1' (. i-Kn :3. A
comnponient represents an equivalence class of versioni>. Thci PNIA rel 1,t ic verslion of a -
com-ponenit by their derivation hist orv, a record of t lie cliaxige> thi 1la cI i if aVersa aW
to another. Changes are traceab~le to the t asks unlder which t hyw 'i c a - in'iii Thli.!

derivation hist orv of a component call be Ibrows,(-d, suinunai ' a 1. and~ edit, (I InII~ e

More specifically, the PNIA keeps tracks of the derivatilonls states of theC 1-odule thaiT ;1
developer is current lv working onl. anid displays the derivat ion history of thle current i(abile

upon his/her request. It allows thle user to save the current state of lie inille worked * *.~-

on into a new version. The versions of a module are saved incremnentallyv as -dclta.<- fromI

previous versiohis. It allows- thle restoration of a previous decrivat iol st it t. It0i~ (r
parallel development nimore than one(derivation t hread) . It also a11 ws, th li uar To' i~iid

changes, to save a prey ions den *at i state into a new~ version. anid to us'ea pnDV anI
version.

Problem Tr-ackig. The PM A allows, uisers, to relmit prohdemos-. pro Idein-fixasi- -

menits, and prolvle- fixe-s to thle systemIi. A trace of user act ivit a ' is anlt oIxIt I Icall \ iclude'd -

in the report to p~rovide cont ext iniformiat ion for prol em diagm s is. imcil in filb> 1 a 1 fd
and software units compliled.

The PMA distributes problemn-reports intelligently Using its knlowledge ab-out t ask as-S
signirnents and relationships between systemncmoeti ls iltf

and reports about prolbleni-fixes to interested parties,. Reques' ts, for J)PleinIIfi-,C> areseO

to the person responsib~le. Problem aind problemiii-fix in)t ic(' are dl> Irilit a to]aT lI

working on comTponents related to the one the problem was, founid Ii. Usevr- caili (iVt!"'

PNIA for known problems in a system component. S

5.2 PMIA User Interface.

The user interface of thle P NI A is mnuii-driven wvith Ii aiI' ii- ;e 11 I. P 1 :;' ,

is being Imiplement ed onl a Symbolics 3Gxx Lisp iii ichinew ivhcli1h Vi ~lii
graphic out put plus a keyboard and a pointimig device (iii a V. f a ii; a it. AT t 1:

there are a number of ,vindlows into thle (lisIplav colleellie I Nvi'l t I v ' piK at '

moeactivt ii whilch each user Is engaged. The P NIA I :a1 ta\(V fI ii

both graphical ajirl textual.

99

P_ '. --

Input. \Vleii tp !pi fvt n .;i- '- :~ ' .IC i.:~-

inputi from"I til tlb; !I. *!I

Output. \\l apprpI lfiitc I ht td.tl -- 11p qi .1 tt u l i>

formii: the forimiat foi \\BS. Pert chirlt>. cANT71 chlt>,. 1idV-,t charts. ,, aii.!Ti
are simlr te thJ,'~ i i-mtui1uiel~i lat.....rinlv h \~I:-4
the derivation his.,tory uI1w, Iw1 (11 si11 tcd Ii ;I Ius-s1i1l NI dlit(,rex.lii ;

for selective. counipa t viewing IhroWvs'nLr of tlI(\\BS 81(lirvinoulir. d.'

typ~es of wiit ptit . such 8- it (5i1 1 ;111(1 hiot Ifir;1TPI t i-t I t he oib* >'!cl'I :11

6Conclusions

S urmnary of Report. The wvork described Ii this report is part of (cffIrt s t~ji ;6at iun

lhe creat ion of soft ware engineering eunvironmneunt s based onl thle knio-wledIge-bis(,1I~f x:

paradigmn. Ini the p~ast,. most work oriented toward the knowvledge b~asedI parzidhiili lii (-(,T;

centrated on the design and, implement at ion of soft-ware per se. Building onl thle r'''t! 1!i

* ~~knowledge- based pro)gramming, We Investi]gat ed the appllicat ion of prograt isv: l(- I

* noh()gy to programmiiing in the large. i.e. the plans and procedures t hat are 2eneIra;1*,-1i

* ~executedl at different software project activity levels. We enmployedl a fomun 1 i -m :
the codification of software project knowl~edge. and developed a model for softwai, 1),J,

management enviroment Ii which it is; possible to generate autoia ttll tI! 1w 1 ~;i.
size plans or arrendlas of project activities. We described ouir work on (levell(4IuII ;I L,0 Lit

time rnodel that is capable of representing timne concepts u'eftil to project IiiauiagI~cilw'l',

In S'ct ion 5, we biefly described an experimental prototype of knowledgffe ho1in t

mnanagenment assist ant which bothI gave ri-se to somle of the Idleas lit roclucetilr\(11idI
provided a test bed for them.

* 11'~he PM .. prot otyping effort hias conicent rated on project niintoring hand clhnil11 :t1

stii)1(rt . This is a wvell-choseuti starting point since mnonitoring is in1 11x411%, wa' i

* tract able thant project planing: nevertheless the design auth 1rot otyping of a prn Ijert 11I
it orlimi assist ant required ai thorough tunderst andiing of thle inany a* ut s. ftmctioiv,.
andI procediirs t hat part icipat e in project rnanagemIIt . The iloiit (rim g, fln ictl ii ii 1;... .

lie I-11 mif-g of tasks. policie~s. requirenment s. schevdules , cost . res ilirces,. pii-f i$ (iii 1:11

Inig anid testing resuts. iamagemnemit decisionis. p~eoplIe. aIl T 1 Ci. hiilgolr >
wIlink liii> providedl a km wletdge- based framnework on whiiclh furtliflo r iihiaiiic h! tt

PMIA prototype Ii the areats of initellgenlt plamihlinfr. risk, asesinil:.ad ((~ ilimll~if ::I, 9- 4
5111(I c(ItI hie uireiiiitahlv Implemned N.

'9 -

For)I the jiirposev of getting feedback and ihidichit Ihlg aiTNehS lieediuig im1provemuemit v" 1.:!,

* (i~f suich alimel Mt sagi-;1 imuplie'. t~wll nr" forI thi'. P, \ !oA to pil~vile ait 1"' 1-'

I Iser Iit lrIfhIe(aII it a v; reasoT I f)i I jifI I iian' I (vcIi InI til I (,;I I tI:. (I d*\,IT

% 9~

% %

at Iill or::i' (U h if Ieto'pe we feel hat'' %ly' . - i f*,f~,

a:;i:Oln: isac of the PNL\ fiI(itotN~t %Ssil(i-)'' i - i:T,-.

Concluding Remarks

I tI exp! a i I v I'i~ tI pro~lci't drp Ii~ I)-' CI; sI I V: tI t V' Ic I> I I

rf 1 t t -, tw recor 1,'d. and~ t hec lack of developmienit 111 -t P:i' ;I., a oi:i~h'~r '
S ni-te tp, precludes thle analysis and reuse of kni), 1 I -EiI

S'-ea~rici 'oin alltomalit(i Td rogram srnt hesis, has produced met lii I- w*:Itl~i ii hcli T pilt 'i '

lem, can lhe tackled in the (lomnan of soft ware (lesni atin OUT: i'WiW*taai)
onl kn1(iwli tge -bhasel project mnagemenit assist ance ha-si i itI :iou ('11 li'f T11;11 tllc

s amf e ilmod ca;i Ile giifullv1" eip] oycdli the auitotlilti '): (of I;it~~ 1)" cy'Ie -:tI' ip t . -

\ tkon f' ril CI ciiT tlmii't rilodlels Opetis 11l) th pi' isjf 'iii ty of qpi' l f 1/71 (; 5,itwat livitit:l

men- s This In turni would providne project desi gners the aidded flexill'ili t of c(- dii ,7it i

tie t r'tsoft wart' syst em . the project plan. ando- thle (It'vi K pmenit enitr(i ilint

Onl a fiiiaTl not e. we offer thle following observation. Better (\ar'cnv%-r (,tfl ifffar

ilii'(d to increase software p)roductijvity. But the coiverse als,(sen> i iiud \' t di

liiii~ rs 'f wa ' p :dct ivi t V to provide better soft-ware enivi, innjT -. Akmwi 1c'lai
soft ware 'ni inmenlcrt at Wiice mo1dels and is part of a soft wari' prod i ici n o)r~aimiza t Ii in

OrgManiIa I 101S chan1Ige COat i11iuallv : t herefore, it s model. t lhe so 'ft ware et cit n 't ,t Ti'-1t

change withI it to retnalilii useful. The difficullties expendicedoI " 1;i aial MNIS departint-
corrt '1 itc(tli- of serx'a til E(I: nowledge- basedc prograi 'a ~ 'ii o-id tlii out 11 to 1 i t lii
eril lin 1 t tcl io iig for b et ter soft ware enlvironment r.ft." t

References
I J . A lHen. IT waru], ;i Generlal Tiienrx (if Ait,, ,:,> 1 1;',::, A :\ i;: 1 1': ::C,'

2!,.1 i 19$4. lp 123- 1 "-1

e % d

S~~. J Xi itPLI'pSXCiaun't:''1 '. i lK
ft ftp

4J. Allen, ff. Kauitz. A lo!f.a T:;'.it.oh1 :1 .1. HOYEL>. R ~

'5' . BlzertI T. (lieathai C. C. Grieeni. Sofw!T(aF,-1cfIjUT),!(w "F1 Upice -

a Noew Prl2l FECompilt!1. Novel,11,.r 19,,3. pp. 3)945 V l-

[61' David R . Barst ow. Knwnl~-lat4P rzJCOns trrlltjon., Else(vier,.K N~v

[71 B. Boehm. SOftwairc v~iie Fconiics.- Prcotic t li 19S1 .

[,S B. Boehmin' Untcex t an miig a: 1Coj 4j1 41mg Soft wr'C>ets P ij iin ,:f:a

tion. Februarv 1986

[9] B. Boelim. .4 Spiral Alo de], of Sonft ware Deveh)piznen ;ain .nhnAintnA 'IS
ware Eniiieeriuii Notes. Vol. 11. No. 4. August 19SC. pp. 22.)4,_

I101 TI. Brow~n, L. Niarkosian. Iioelg-B.tdSoftware Dc 'xelop~in-n : nz 1

inen t.s to C'ode. sul)ni i itel for pu.l Aicat ionI

*][11] E. Daly. Organizing foi- Successfuil Soft ware Dt-ielopniwilt. D;n ia i nIl.o D 'ct!!;,,

1979. pp. 107-116. Reprinted In D. Rcifer. Software AManaleznent. IEEETo
second edition. pp. 143.1,50

* [12] D. Dowty lWbrd M\eaning and Montague Grammar, Reidel. 1979.

[13] A. Goldberg. K'no Jed Ie-1 ix'±sd Trograrnininig: A4 Survey of Program~.es~ :'
Construction Tchniquos, IEEE Iasic nx oii Software Elglineerllng. .111 p'v'D.' i,
732-768

[14] A. Goldberg and G. Kot ik. Knowledge-BasedI Prograniming: Anz Overviewv of Dait a.
andl Contrvol St ructumre Refinemnt. In H. Haiicen. ed.. IsPection, Te tig. 1\Ijf(,
tion. A4hernait Ivc! pp. 287I-309. Elsevier Northl-Holland, 19S4

[15] C. Hamblin. Instanits, and Itervals. Stilodium Generale 27. 197 1. pp. 12 7-13-1.

*[16] 1. Humberstone, Initerval Scmnant ics for Tense,(Logic: Some IRezarkst. J. P1hil(pl

* meal Logic 8, 1979. pp. 171-196.

[17] B. Jonssomi, A. Tarski. Booleanilm ba with Opera t or I, A mnicat~ii .1. N
mnatics (73). 1951.

'IS' B. Jonsson, A. Tarski. Bolt',;o .4lth withi 1pt aurIIAmIcamII .1. M

ii is(741 1952. pp. 127-162.

1I9' G. IKotik. I\1wIredgn-, BiastdC> 1Tlitp of IDd ~Latat Tipes. \ecstr'ic!

* lute. Tcciimeal Report. 19S:3

,)(j P. Ladkin. Time A7peettei TaIxuIjoml of Inevl rlmto o.Evn1'.- -

AA.AI S6. pp. 360 366. N ra ~nfiani %
-V

2.

'2'P. Ladki n. Prinlrive., arid Uiut for Timew op±r~x P ' 2L f A A A! -C.

2 P. Ladkiii. Two) Pajfl,. onl 7ii RvpJre-5e!Itaiti~iij. -5~' ~~jUP-~.:B i

IKE Ti >GCi.~ rl I-I t ue.Palo Alto,. ('A. 19-64.

R23 . NI add ux . 7 Mi i ?.'aI A gchra.,. Ph1. D. Tlwb . V~Iin vcrM v of ;11[%

4E. NI art iiiSn o fir a Df)D Soft warc hmit j X.(% tp t.

2C Robin MIilnier. FIow L'raph.'- a'ti(l Flow Akebra.-. .1.A('NI 264.1p. 79 4 i.()rY

1979

'2 C WV. Newton-Sinithi, Thet Striirtunir of Tuzxle. Routledg. Nef-Lini Pwil . 195')

[27V H . Part sch, R. Steinbriiggen, Prograin Trans!formationj S'ist emsj. C' Ii4 it. 52:-
v'eys. Vol 15. No. 3. Sept. 1983, pp. 199-236

12S', R. Pelavin., J. Allen, A Formal logic of Plans in a TemporallY Rich Do"1nail. *.

Proceedings of thc IEEE 74 (10), October 19S6. pp. 1364-13S2.

f99' N1. Penedo and E. Stuckle. P.NIDB - A4 Project Ma.ster Data B.efor So! vare

En L~1~e'rl i Evironiments. Pi occediiig! on thle Sth Ii SE. Atigoiit 1 9S5. pp. I1.')()- 17-

[30' V. Polak. Frameowork for a Knowledge Based-(Programiming Enivirnment. NV Tk -

51io(1)in advanced programminlg enviroilmexilts. TronIihiiii. 19S6

[31' P. Roper. itervals; and Tenses, .Ioiiriial of Plb)opdical Lovic 9. 19Sf)

[32' J.F.A.K. van Benthein. The Logic of Tim.'. Reidlel 1953.

W23 S. XWcst fold. Logic Sju'cifica tlin For Coriipili fg. Nest n-I lu- 1,1twe 1< ES.T, G2 . .1urnw

'S.-

-.5. J

M!ISSION
* Of

Pain Air Development Center

J C tkl d Z C Ut'5 t4'C i)1 ' (C l 3 U1C ' .~

mm , C tI m m u t ~ cc i I S -1 i d4 k, t,

TLrf a tv t 5 Tc. c umA HC LT L Q(ji

ESV P :, qI am 0 cC (P0s akid c t,~t E SO r'm.!c

ct me a u c z c hi c c c m 1 l c c it c , i c

* 5 ds t 5a c 2-iCC S tiC Coav S , t Ia
a Ll t ail , Ct, I C ~ C , m ai~

rROTNO

l IL /Y F

/ 17/tC/

-. o
°,~- . *V • - . V *.. % *.- * j-. -a* % . . , v • - -

I -. -. --

* ." .° .

4.C
/W(,-

/*. 7.,*-*-*-
?~

a$ *
*,Nor

